Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Quan-Lin Yu, ${ }^{\text {a,b }}$ Hong-Quan

 Duan ${ }^{\text {c }}$ and Wen-Yuan Gao ${ }^{\text {a* }}$${ }^{\text {a }}$ College of Pharmaceutical and Technology, Tianjin University, Tianjin 300072, People's Republic of China, ${ }^{\mathbf{b}}$ School of Agronomy, Hebei Normal University of Science Technology, Hebei Cangli 066600, People's Republic of China, and ${ }^{\text {c School of Pharmacy, Tianjin }}$ Medical University, Tianjin 300070, People's Republic of China

Correspondence e-mail:
wy_gao1@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.144$
Data-to-parameter ratio $=9.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-Hydroxy-5,7,4'-trimethoxyflavone monohydrate from Cucubalus baccifier (L.)

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, is a flavonol which was isolated from Cucubalus baccifer (L.). Intermolecular O$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules to form networks stacked along the a axis.

Comment

Cucubalus baccifer (L.) is a Chinese folk herb used for arthritis, pulmonary tuberculosis (in oral use) and scrofula (topical use). It is sporadically distributed in northeast, northwest and southwest China, as well as in Europe, central Asia and India. Previously, triterpenoids, flavonoids and phytoecdysterones were isolated from C. baccifier. 3-Hydroxy-5,7,4'-trimethoxyflavone has been isolated from Aflaia (Greger et al., 2001) and from Alpinia tonkinensi (Zhang et al., 2003). The chemical structure of the natural product 3-hydr-oxy-5, $7,4^{\prime}$-trimethoxyflavone from the plants was determined on the basis of NMR data (Zhang et al., 2003). The chemical structure of the title monohydrate, (I), has now been confirmed by single-crystal X-ray diffraction analysis.

(I)

In the molecule of (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The rings A (C5$\mathrm{C} 10), B(\mathrm{O} 1 / \mathrm{C} 2-\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 10)$ and $C\left(\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}\right)$ are each planar, and they are also nearly coplanar, with a puckering amplitude of $Q_{\mathrm{T}}=0.0824$ (3) \AA (Cremer \& Pople, 1975).

As can be seen from the packing diagram (Fig. 2), intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules to form networks stacked along the a axis. Dipole-dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

Experimental

The aerial part of C. baccifer was collected in September 2003, in Hebei province, China. A voucher specimen, identified by Dr WenYuan Gao, was deposited under registration No. TJU-03928 at the herbarium of the Department of Natural Products and Traditional Chinese Medicine, Tianjin University. The material (6 kg) was refluxed three times with $\mathrm{EtOH}(95 \%)$. The extract was concentrated under reduced pressure to give a residue (600 g) which was parti-

Received 1 June 2006
Accepted 12 June 2006
tioned between ethyl acetate and water (1:1). The EtOAc extract was chromatographed on silica gel column with increasing polarity eluant; similar eluates, as indicated by thin-layer chromatography analysis, were combined to yield 19 fractions. Fraction 2 was subjected to column chromatography on Toyopearl HW-40, eluting with $\mathrm{CHCl}_{3} /$ MeOH (2:1), to yield five fractions. The third fraction was recrystallized from CHCl_{3} to afford the title compound, (I) (yield 2.5 g , m.p. 421.2-423.2 K).

Crystal data

Data collection

Rigaku Saturn 70 diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)
$T_{\text {min }}=0.987, T_{\text {max }}=0.993$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.421 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.12 \times 0.06 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

12416 measured reflections 2246 independent reflections 2035 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=27.8^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0696 P)^{2}\right. \\
&+0.1604 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 Extinction coefficient: 0.029 (5)
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.144$
$S=1.21$
2246 reflections
240 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 1
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Greger, H., Pacher, T., Brem, B., Bacher, M. \& Hofer, O. (2001). Phytochemistry, 57, 57-64.
Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalClear and CrystalStructure (Version 3.70). Rigaku/ MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, J., Guo, Q. H. \& Kong, L. Y. (2003). China J. Chin. Mater. Med., 28, 4143.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

